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Abstract. A spin-I Ising model with a random crystal field A, has been studied within 
the mean-field approximation. For the particular two-valued distribution P(Ai)  = 
i{d[A, - A(1 + (U)] + 6[A, - A(1 - (U)]}, depending upon the value of CY, three types of 
diagram have been found in the ( A %  r )  plane. 

The regular spin-1 Ising model with a crystal field exhibits a tricritical point, at which 
the phase transition changes from second to first order, when the value of the anisotropy 
constant A takes a critical value At (Blume et af 1971). In a previous investigation 
(Benyoussef et af 1987), general expressions needed for evaluating the phase diagram 
of a spin-1 king model with a random crystal field have been obtained within the mean- 
field approximation. 

In this paper we study, via the mean-field approximation, the influence of crystal- 
field disorder on the phase transition in the spin-1 Ising system on a regular lattice 
described by the following Hamiltonian: 

H = -J S I S I  + 2 AIS; 
1.1 I 

where J > 0, Si = - 1,0,  + 1. The first sum runs over all pairs of nearest neighbours and 
AI is a random crystal field distributed according to the law 

P(A;) = i{S[A; - A(1 + CY)] + d[Al - A(1 - CY)]} (2) 

where CY 0. 
In a recent paper, Kaneyoshi (1988) has studied this problem using the differential 

operator technique, but his conclusions were limited to second-order phase transitions 
and left aside both possible first-order transitions and the possible existence of new 
phases. 
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In fact, we shall see that the last possibility is realised within the mean-field approxi- 
mation. The mean-field equation of state is easy to obtain. It is given by 

2e-AllT sinh(zJm/T) 
= j2e-AjlT cosh(zJm/T) + 1 P(Ai 1 d(Ai) 

and, after integration over the distribution of Ai. 

( 3 )  
1 

2 cosh(m/t) + e[d(' - a) i r l  
+ 1 

(2 cosh(m/t) + eld(' + 

m = sinh(m/t) 

where m is the magnetisation, t = T/zJ the rcduced temperature, z the number of 
nearest neighbours and d = A/zJ the reduced crystal field. 

In general, an additional equation that gives the mean value of S 2  should be added 
to ( 3 ) ,  however, within the mean-field approximation; this mean value does not appear 
in (3) and, therefore, it is not necessary for constructing the phase diagram. 

The free energy per spin is given by 

) P(Ai) d(Ai) 
2 cosh(zJm/T) 

+ T / l n ( l  - 2 cosh(zJm/T) + e AdT 
zJm2 F=-- 

2 

and, here again, after integration over the distribution of Ai the reduced free energy is 

f = F / ~ J  = tm2 - 1 &n (2 cosh(m/t) + e[d(' + a) / r ] }  + In (2 cosh(m/t) + - iy)"l}] + d. 
(4) 

In order to determine the transition lines we have investigated the behaviour of 
different solutions form that minimise the free energy (4). In the neighbourhood of the 
second-order transition line, m is small and, expanding the right-hand side of the 
equation of state, we have 

m = a m  + bm3 + cm5 + . . , 
with 

a = ( l / t ) ( x +  Y )  b = (l/t3)[X($ - X) + Y(Q - Y ) ]  

= ( i / t5){3& - x(i - x > l +  Y[& - ~ ( t  - Y ) ] )  

where 
x = 1/{2 + el41 + .)if]> y = 1/{2 + e [ d ( l -  a)/fl), 

The second-order phase transition line is determined by putting a = 1 and b < 0. 
The tricritical point corresponds to a = 1, b = 0 and c < 0. 

The study of the phase diagram in the ( t ,  d )  plane yields three different situations 
depending on the value of a. To classify them we shall proceed as follows. Let us first 
discuss the ground-state phase diagram in the (a ,  d )  plane for the particular distribution 
(2) (figure 1). 

For T = 0 and a 2 0, equation (3) has three solutions: m = 0 (paramagnetic phase); 

solutions can easily be calculated. By comparing these energies, the type of the ground 
state is then determined and we see from figure 1 that three cases can be distinguished. 

(i) For 0 < a < a first-order transition between the m = 1 phase and the m = 0 
phase occurs at d = &. 

m = - (  partly ordered phase); and m = 1 (ordered phase). The energies of all possible 
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Figure 1. The ground-state phase diagram for the 
two-valued distribution of the anisotropy con- 
stant. 
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Figure 2. A typical phase diagram in  the (d ,  r)  
plane obtained for 0 6 (Y < 4. The numerical 
results presented were obtained for cy = f .  
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Figure3. As figure 2 but for 4 s 1y < 1. The results 
presented are for (Y = !, 

Figure 4. As figure 2 but for (Y 5 1, The results 
presented are for (Y = 3. 

(ii) F o r t  s a < 1 two first-order transitions between the m = 1 phase and the m = 4 
phase and between the m = 1 phase and the m = 0 phase occur respectively at d = 
3/4( 1 + a) and d = 1/4( 1 - a). 

(iii) For a 3 1 a first-order transition between the m = 1 phase and the m = f phase 
occurs at d = 3/4(1 + a). 

For T # 0, the phase diagram in the (d, t )  plane for different values of a was 
determined numerically. The result is the following. There are two special values of a, 
a = 4 and a = 1, which divide the interval [0, x[ into three sub-intervals where three 
topologically different types of phase diagram occur. 

Type 1 (0 s cy < 4): the diagram contains second-order and first-order lines which 
meet at the tricritical point (figure 2). 

Type 2 (3 .s a < 1): in this case, a new ordered phase (m = +, the partly ordered 
phase) appears in the interval 3/4(1 + a)  S d s 1/4(1 - a) .  In  this phase the mag- 
netisation is smaller than that of them = 1 phase at 0 s d < 3/4( 1 + a) .  The two ordered 
phases m = 4 and m = 1 are separated, at low temperatures by a first-order line starting 
at d = 3/4(1 + a) at T = 0. The first-order line separating the two ordered phases 
terminates at a fluid-like critical point (see figure 3). 
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Type3 ( a  2 1): the system does not exhibit a tricritical behaviour but we have a first- 
order transition line separating the two ordered phases (figure 4). The same situation 
occurs for the s = f Ising model in an external random field (Kaufman et a1 1986). 

In conclusion, the spin-1 Ising model with crystal-field disorder exhibits a variety of 
phase transitions together with a number of multicritical points. 
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